Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Ultrasound Med ; 41(9): 2203-2215, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2256852

ABSTRACT

OBJECTIVES: Worldwide, lung ultrasound (LUS) was utilized to assess coronavirus disease 2019 (COVID-19) patients. Often, imaging protocols were however defined arbitrarily and not following an evidence-based approach. Moreover, extensive studies on LUS in post-COVID-19 patients are currently lacking. This study analyses the impact of different LUS imaging protocols on the evaluation of COVID-19 and post-COVID-19 LUS data. METHODS: LUS data from 220 patients were collected, 100 COVID-19 positive and 120 post-COVID-19. A validated and standardized imaging protocol based on 14 scanning areas and a 4-level scoring system was implemented. We utilized this dataset to compare the capability of 5 imaging protocols, respectively based on 4, 8, 10, 12, and 14 scanning areas, to intercept the most important LUS findings. This to evaluate the optimal trade-off between a time-efficient imaging protocol and an accurate LUS examination. We also performed a longitudinal study, aimed at investigating how to eventually simplify the protocol during follow-up. Additionally, we present results on the agreement between AI models and LUS experts with respect to LUS data evaluation. RESULTS: A 12-areas protocol emerges as the optimal trade-off, for both COVID-19 and post-COVID-19 patients. For what concerns follow-up studies, it appears not to be possible to reduce the number of scanning areas. Finally, COVID-19 and post-COVID-19 LUS data seem to show differences capable to confuse AI models that were not trained on post-COVID-19 data, supporting the hypothesis of the existence of LUS patterns specific to post-COVID-19 patients. CONCLUSIONS: A 12-areas acquisition protocol is recommended for both COVID-19 and post-COVID-19 patients, also during follow-up.


Subject(s)
COVID-19 , Humans , Longitudinal Studies , Lung/diagnostic imaging , SARS-CoV-2 , Ultrasonography/methods
2.
J Acoust Soc Am ; 149(5): 3626, 2021 05.
Article in English | MEDLINE | ID: covidwho-1258993

ABSTRACT

In the current pandemic, lung ultrasound (LUS) played a useful role in evaluating patients affected by COVID-19. However, LUS remains limited to the visual inspection of ultrasound data, thus negatively affecting the reliability and reproducibility of the findings. Moreover, many different imaging protocols have been proposed, most of which lacked proper clinical validation. To address these problems, we were the first to propose a standardized imaging protocol and scoring system. Next, we developed the first deep learning (DL) algorithms capable of evaluating LUS videos providing, for each video-frame, the score as well as semantic segmentation. Moreover, we have analyzed the impact of different imaging protocols and demonstrated the prognostic value of our approach. In this work, we report on the level of agreement between the DL and LUS experts, when evaluating LUS data. The results show a percentage of agreement between DL and LUS experts of 85.96% in the stratification between patients at high risk of clinical worsening and patients at low risk. These encouraging results demonstrate the potential of DL models for the automatic scoring of LUS data, when applied to high quality data acquired accordingly to a standardized imaging protocol.


Subject(s)
COVID-19 , Deep Learning , Humans , Lung/diagnostic imaging , Reproducibility of Results , SARS-CoV-2 , Ultrasonography
4.
J Ultrasound Med ; 40(8): 1627-1635, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-911809

ABSTRACT

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can generate severe pneumonia associated with high mortality. A bedside lung ultrasound (LUS) examination has been shown to have a potential role in this setting. The purpose of this study was to evaluate the potential prognostic value of a new LUS protocol (evaluation of 14 anatomic landmarks, with graded scores of 0-3) in patients with SARS-CoV-2 pneumonia and the association of LUS patterns with clinical or laboratory findings. METHODS: A cohort of 52 consecutive patients with laboratory-confirmed SARS-CoV-2 underwent LUS examinations on admission in an internal medicine ward and before their discharge. A total LUS score as the sum of the scores at each explored area was computed. We investigated the association between the LUS score and clinical worsening, defined as a combination of high-flow oxygen support, intensive care unit admission, or 30-day mortality as the primary end point. RESULTS: Twenty (39%) patients showed a worse outcome during the observation period; the mean LUS scores ± SDs were 20.4 ± 8.5 and 29.2 ± 7.3 in patients without and with worsening, respectively (P < .001). In a multivariable analysis, adjusted for comorbidities (>2), age (>65 years), sex (male), and body mass index (≥25 kg/m2 ), the association between the LUS score and worsening (odds ratio, 1.17; 95% confidence interval, 1.05 to 1.29; P = .003) was confirmed, with good discrimination of the model (area under the receiver operating characteristic curve, 0.82). A median LUS score higher than 24 was associated with an almost 6-fold increase in the odds of worsening (odds ratio, 5.67; 95% confidence interval, 1.29 to 24.8; P = .021). CONCLUSIONS: Lung ultrasound can represent an effective tool for monitoring and stratifying the prognosis of patients with SARS-CoV-2 pulmonary involvement.


Subject(s)
COVID-19 , Pneumonia , Aged , Humans , Lung/diagnostic imaging , Male , SARS-CoV-2 , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL